연중 무휴 온라인 서비스 : +86 13950095727

#이메일
  • 몫 :

  • facebook
  • g
  • y
  • t
  • instagram
  • in
제품

고강도 긴 유리 섬유 LGF 수정 된 나일론 PA6 긴 유리 섬유 강화 폴리 아미드 나일론 PA6 기계적 특성이 보다 일반 수정 PA6 나일론. 우수한 장기 내열성, 치수 안정성, 일반 알루미늄 합금 재료 대체 가능, 비용이 저렴 금속 재료.

  • PA6-NA-LGF
    필러 긴 유리 섬유 강화 화합물이 포함된 나일론 폴리아미드 6
    유리 충전 나일론 또는 PA6-GF는 PA6(폴리아미드 6)을 기본 화합물로 사용합니다. 폴리카프로락탐(PA6)은 나일론 6 또는 PA6의 또 다른 이름입니다. PA6-GF는 저온에서 우수한 성능을 발휘하며 강한 인성과 내충격성을 갖추고 있습니다. 또한 치수 안정성과 흡습성이 높습니다. PA6 GF의 유리 섬유 함량은 20%~60%입니다. 유리섬유 함량이 증가하면 강도와 강성은 증가하는 반면 인성과 충격 저항성은 감소합니다.
    더보기
  • PA6-LGF
    LFT-G 폴리아미드 6 나일론 6 충전 긴 유리 섬유 자동차 부품용 원래 색상
    PA6 플라스틱이란 무엇입니까? 폴리아미드(PA)는 일반적으로 나일론이라고 불리며, 주쇄에 아미드기(-NHCo-)를 포함하는 이종사슬 고분자입니다. 지방족 그룹과 방향족 그룹으로 나눌 수 있습니다. 가장 먼저 개발되었으며 가장 많이 사용되는 열가소성 엔지니어링 재료입니다. 폴리아미드 주쇄에는 반복되는 아미드기가 많이 포함되어 있어 나일론이라는 플라스틱, 나일론이라는 합성섬유로 사용됩니다. 이원 아민과 이염기산 또는 아미노산에 포함된 탄소 원자 수에 따라 다양한 폴리아미드가 제조될 수 있습니다. 현재 수십종의 폴리아미드가 있으며 그 중 폴리아미드-6, 폴리아미드-66 및 폴리아미드-610이 가장 널리 사용됩니다. 폴리아미드-6은 경량, 강한 강도, 내마모성, 약산 및 알칼리 저항성, 일부 유기 용제, 쉬운 성형 및 가공 및 기타 우수한 특성을 지닌 지방족 폴리아미드로 섬유, 엔지니어링 플라스틱 및 박막 및 기타 분야에 널리 사용됩니다. 그러나 PA6 분자 사슬 세그먼트에는 강한 극성의 아미드 그룹이 포함되어 있어 물 분자와 수소 결합을 쉽게 형성할 수 있습니다. 이 제품은 물 흡수율이 크고 치수 안정성이 낮으며 건조 상태 및 저온에서 충격 강도가 낮고 산 및 알칼리에 강한 내성이라는 단점이 있습니다. . 나일론 6의 장점: 기계적 강도가 높고 인성이 좋으며 인장강도와 압축강도가 높습니다. 내피로성이 뛰어나 반복 구부림 후에도 부품이 원래의 기계적 강도를 유지합니다. 연화점이 높고 내열성이 뛰어납니다. 매끄러운 표면, 작은 마찰계수, 내마모성. 내식성, 알칼리 및 대부분의 염분에 매우 강하고 약산, 오일, 가솔린, 방향족 화합물 및 일반 용제에도 강하며 방향족 화합물은 불활성이지만 강산 및 산화제에는 내성이 없습니다. 가솔린, 오일, 지방, 알코올, 알칼리성 등의 부식에 저항할 수 있으며 노화 방지 능력이 좋습니다. 자기소화성, 무독성, 무취, 내후성이 우수하고 생물학적 침식에 불활성이며 항균 및 곰팡이 저항성이 우수합니다. 전기적 성능이 우수하고 전기 절연성이 우수하며 나일론 체적 저항이 높고 항복 전압 저항이 높으며 건조한 환경에서 주파수 절연 재료를 사용할 수 있으며 습도가 높은 환경에서도 여전히 전기 절연성이 우수합니다. 경량이며 염색이 용이하고 성형이 용이하며 용융점도가 낮아 흐름이 빠르다. 나일론 6의 단점: 물을 쉽게 흡수하고 수분 흡수가 가능하며 포화수는 3% 이상에 도달할 수 있습니다. 내광성이 나쁘고 장기간 고온 환경에서는 공기 중의 산소와 함께 산화되어 처음에는 갈색으로 변하고 이후 표면이 부서지고 갈라집니다. 사출 성형 기술 요구 사항이 더욱 엄격해지고, 미량의 수분이 존재하면 성형 품질에 큰 손상을 줄 수 있습니다. 열팽창으로 인해 제품의 치수 안정성을 제어하기가 어렵습니다. 제품에 날카로운 각도가 있으면 응력이 집중되고 기계적 강도가 감소합니다. 벽 두께가 균일하지 않으면 부품이 뒤틀리고 변형됩니다. 후가공에는 높은 정밀도의 장비가 요구됩니다. 물, 알코올, 팽윤을 흡수하며 강산성 및 산화제에 저항성이 없어 내산성 재료로 사용할 수 없습니다. Long Glass Fiber를 충전하는 이유는 무엇입니까? PA6은 경량성, 강한 강도, 내마모성, 약산성, 내알칼리성, 일부 유기용제성 등 우수한 특성을 갖고 있으며 성형 및 가공이 용이합니다. 섬유, 엔지니어링 플라스틱, 필름 분야에서 널리 사용됩니다. 그러나 PA6의 분자 사슬 부분에는 물 분자와 수소 결합을 형성하기 쉬운 극성이 높은 아미드 그룹이 포함되어 있습니다. 이 제품은 수분 흡수율이 크고, 치수 안정성이 낮으며, 건조 상태 및 저온 충격 강도가 낮고, 산 및 알칼리에 강하다는 단점이 있습니다. 과학 기술의 발전과 삶의 질 향상으로 인해 기존 PA6 소재의 일부 특성 결함으로 인해 일부 분야에서는 개발이 제한되었습니다. PA6의 성능을 향상시키고 응용분야를 확대하기 위해서는 PA6의 개조가 필요하다. 충전 강화 수정은 PA6의 물리적 수정을 위한 일반적인 방법입니다. PA6를 매트릭스에 유리섬유, 탄소섬유 등의 충전재를 첨가하여 재료의 기계적 성질, 난연성, 열전도도, 치수안정성을 획기적으로 향상시킨 개질을 말합니다. PA6-LGF의 적용이란 무엇인가요? 30% 길이의 유리 섬유 강화 PA6의 개질 단면은 전
    더보기
  • PA6-NA-LGF30
    샤먼 LFT-G 나일론 6 폴리아미드 6 복합 긴 유리 섬유 수정 플라스틱 12mm 원래 색상
    PA6 소재 PA6은 현재 현장에서 가장 널리 사용되는 재료 중 하나이며 PA6은 균형이 잘 잡혀 있고 성능이 좋은 매우 우수한 엔지니어링 플라스틱입니다. 나일론 6 엔지니어링 플라스틱 제조에 사용되는 원료는 광범위하고 저렴하며 외국 기업의 기술 독점에 의해 제한되지 않습니다. 그러나 이 저렴하고 우수한 소재를 잘 활용하기 위해서는 먼저 이에 대한 이해가 필요합니다. 오늘은 유리섬유 강화 PA6 엔지니어링 플라스틱부터 시작하겠습니다. 왜냐하면 이것이 PA6 엔지니어링 플라스틱의 가장 중요한 카테고리이기 때문입니다. 다른 엔지니어링 플라스틱과 마찬가지로 PA6도 높은 수분 흡수성, 저온 충격 인성, 치수 안정성 등의 장점과 단점을 가지고 있습니다. 따라서 엔지니어는 PA6를 개선하기 위해 다양한 방법을 사용하게 되는데, 이를 수정이라고 합니다. 현재 가장 보편적인 방법은 PA6와 유리섬유(GF)를 혼합하고 개질하는 것이다. 오늘은 유리섬유 GF 시스템 하에서 PA6 엔지니어링 플라스틱의 기계적 성질을 참고로 살펴보고 소재 선택에 도움을 드리겠습니다. PA6-LGF 1. PA6 엔지니어링 플라스틱에 대한 유리 섬유 함량의 영향 우리는 섬유보강 복합재료에 있어서 함량지수가 가장 큰 영향을 미치는 요소 중 하나라는 것을 응용과 실험을 통해 알 수 있습니다. 유리섬유 함량이 증가함에 따라 재료의 단위 면적당 유리섬유의 수가 증가하게 되는데, 이는 유리섬유 사이의 PA6 매트릭스가 얇아진다는 것을 의미합니다. 이러한 변화는 유리 섬유 강화 PA6 복합재의 충격 인성, 인장 강도, 굽힘 강도 및 기타 기계적 특성을 결정합니다. 충격 성능 측면에서 유리 섬유 함량이 증가하면 PA6의 노치 충격 강도가 크게 증가합니다. 장유리섬유(LGF) 충진 PA6를 예로 들면 충진량이 35%로 증가하면 노치 충격강도는 24.8J/m에서 128.5J/m으로 증가한다. 그러나 유리섬유 함량은 높을수록 좋고, 단유리섬유(SGF) 충진량은 42%에 도달했으며, 재료의 충격 강도는 최고 17.4kJ/ã¡에 도달했지만 계속 추가하면 격차가 벌어집니다. 충격강도는 감소하는 경향을 보였다. 굽힘 강도 측면에서 유리 섬유의 양이 증가하면 굽힘 응력이 수지층을 통해 유리 섬유 사이로 전달될 수 있습니다. 동시에 유리섬유가 수지로부터 추출되거나 파손될 때 많은 에너지를 흡수하여 재료의 굽힘강도를 향상시킨다. 위의 이론은 실험을 통해 검증되었습니다. 데이터에 따르면 LGF(Long Glass Fiber)를 35% 충전하면 굽힘 탄성률이 4.99GPa로 증가하는 것으로 나타났습니다. SGF(단유리섬유) 함량이 42%일 때 굽힘탄성계수는 10410MPa에 달하며 이는 순수 PA6의 약 5배에 이른다. 2. PA6 복합재에 대한 유리 섬유 유지 길이의 영향 유리섬유의 섬유 길이 또한 재료의 기계적 특성에 분명한 영향을 미칩니다. 유리섬유의 길이가 임계길이(재료가 섬유의 인장강도를 가질 때의 섬유의 길이)보다 작을 경우, 유리섬유와 수지의 경계면 결합면적은 길이가 길어질수록 증가한다. 유리 섬유. 복합재료가 파손되면 수지로부터 유리섬유의 저항력도 커져 인장하중을 견디는 능력이 향상된다. 유리 섬유의 길이가 임계값을 초과하면 긴 유리 섬유가 충격 하중 하에서 더 많은 충격 에너지를 흡수할 수 있습니다. 또한, 유리섬유의 끝부분은 균열성장의 기시점이 되는데, 긴 유리섬유 끝부분의 수가 상대적으로 적어 충격강도를 현저히 향상시킬 수 있다. 실험결과, 유리섬유 함량을 40%로 유지하고, 유리섬유의 길이를 4mm에서 13mm로 증가시키면 소재의 인장강도가 154.8MPa에서 164.4MPa로 증가하는 것으로 나타났다. 굽힘강도와 노치충격강도는 각각 24%, 28% 증가하였다. 또한, 연구에 따르면 유리섬유의 원래 길이가 7mm 미만일 때 재료 성능이 더욱 뚜렷하게 증가하는 것으로 나타났습니다. 짧은 유리 섬유와 비교하여 긴 유리 섬유 강화 PA6 소재는 외관 뒤틀림 저항성이 우수하고 고온 다습 조건에서 기계적 특성을 더 잘 유지할 수 있습니다. 참고용 TDS PA6은 제품의 특성에 따라 장유리섬유를 20~60% 첨가하여 장유리섬유 강화재로 만들 수 있습니다. 장유리섬유를 첨가한 PA6는 유리섬유를 첨가하지 않은 것보다 강도, 내열성, 충격저항성, 치수안정성, 내변형성이 우수합니다. 다음 TDS는 PA6-LGF30의 데이터를 보여줍니다. 신청 PA6-LGF는 자동차 산업에서 가장 큰
    더보기
  • PA6-NA-LGF
    LFT 폴리아미드 6 나일론 6 강화 긴 유리 섬유 자동차 부품용 원래 색상
    PA6 플라스틱이란 무엇입니까? 폴리아미드(PA)는 일반적으로 나일론이라고 불리며, 주쇄에 아미드기(-NHCo-)를 포함하는 이종사슬 고분자입니다. 지방족 그룹과 방향족 그룹으로 나눌 수 있습니다. 가장 먼저 개발되었으며 가장 많이 사용되는 열가소성 엔지니어링 재료입니다. 폴리아미드 주쇄에는 반복되는 아미드기가 많이 포함되어 있어 나일론이라는 플라스틱, 나일론이라는 합성섬유로 사용된다. 이원 아민과 이염기산 또는 아미노산에 포함된 탄소 원자 수에 따라 다양한 폴리아미드가 제조될 수 있습니다. 현재 폴리아미드는 수십 가지가 있으며 그 중 폴리아미드-6, 폴리아미드-66 및 폴리아미드-610이 가장 널리 사용됩니다. 폴리아미드-6은 경량, 강한 강도, 내마모성, 약산 및 알칼리 저항성, 일부 유기 용제, 쉬운 성형 및 가공 및 기타 우수한 특성을 지닌 지방족 폴리아미드로 섬유, 엔지니어링 플라스틱 및 박막 및 기타 분야에 널리 사용됩니다. 그러나 PA6 분자 사슬 세그먼트에는 강한 극성의 아미드 그룹이 포함되어 있어 물 분자와 수소 결합을 쉽게 형성할 수 있습니다. 이 제품은 물 흡수율이 크고 치수 안정성이 낮으며 건조 상태 및 저온에서 충격 강도가 낮고 산 및 알칼리에 강한 내성이라는 단점이 있습니다. . 나일론6의 장점: 기계적 강도가 높고 인성이 좋으며 인장강도와 압축강도가 높습니다. 내피로성이 뛰어나 반복 구부림 후에도 부품이 원래의 기계적 강도를 유지합니다. 연화점이 높고 내열성이 뛰어납니다. 표면이 매끄러우며 마찰계수가 작고 내마모성이 뛰어납니다. 내식성, 알칼리 및 대부분의 염분에 대한 내성이 강하고 약산, 오일, 가솔린, 방향족 화합물 및 일반 용매에도 내성이 있는 방향족 화합물은 불활성이지만 강산 및 산화제에는 내성이 없습니다. 가솔린, 오일, 지방, 알코올, 알칼리성 등의 부식에 저항할 수 있으며 노화 방지 능력이 좋습니다. 자기소화성, 무독성, 무취, 내후성이 우수하고 생물학적 침식에 불활성이며 항균 및 곰팡이 저항성이 우수합니다. 전기적 성능이 우수하고 전기 절연성이 우수하며 나일론 체적 저항이 높고 항복 전압 저항이 높으며 건조한 환경에서 주파수 절연 재료를 사용할 수 있으며 습도가 높은 환경에서도 여전히 전기 절연성이 좋습니다. 경량이며 염색이 용이하고 성형이 용이하며 용융점도가 낮아 흐름이 빠르다. 나일론 6의 단점: 물을 쉽게 흡수하고 수분 흡수가 가능하며 포화수는 3% 이상에 도달할 수 있습니다. 내광성이 좋지 않아 장기간 고온 환경에서 공기 중의 산소와 함께 산화되어 처음에는 색상이 갈색으로 변하고 이후 표면이 부서지고 갈라집니다. 사출 성형 기술 요구 사항이 더욱 엄격해지고, 미량의 수분이 존재하면 성형 품질에 큰 손상을 줄 수 있습니다. 열팽창으로 인해 제품의 치수 안정성을 제어하기가 어렵습니다. 제품에 날카로운 각도가 있으면 응력이 집중되고 기계적 강도가 감소합니다. 벽 두께가 균일하지 않으면 부품이 뒤틀리고 변형됩니다. 후가공에는 높은 정밀도의 장비가 요구됩니다. 물, 알코올, 팽윤을 흡수하며 강산성 및 산화제에 저항성이 없어 내산성 재료로 사용할 수 없습니다. 장유리섬유를 채우는 이유는 무엇인가요? PA6은 경량성, 강한 강도, 내마모성, 약산성, 내알칼리성, 일부 유기용제성 등 우수한 특성을 갖고 있으며 성형 및 가공이 용이합니다. 섬유, 엔지니어링 플라스틱, 필름 분야에서 널리 사용됩니다. 그러나 PA6의 분자 사슬 부분에는 물 분자와 수소 결합을 형성하기 쉬운 극성이 높은 아미드 그룹이 포함되어 있습니다. 이 제품은 수분 흡수율이 높고, 치수 안정성이 낮으며, 건조 상태 및 저온 충격 강도가 낮고, 산 및 내알칼리성이 강하다는 단점이 있습니다. 과학 기술의 발전과 삶의 질 향상으로 인해 기존 PA6 소재의 일부 특성 결함으로 인해 일부 분야에서는 개발이 제한되었습니다. PA6의 성능향상과 적용분야 확대를 위해서는 PA6의 개조가 필요하다. 충전 강화 수정은 PA6의 물리적 수정을 위한 일반적인 방법입니다. PA6의 매트릭스에 유리섬유, 탄소섬유 등의 충전재를 첨가하여 재료의 기계적 물성, 난연성, 열전도도, 치수안정성을 획기적으로 향상시킨 개질을 말합니다. PA6-LGF의 적용이란 무엇인가요? 30% 길이의 유리 섬
    더보기
  • PA6-NA-LGF30
    샤먼 LFT-G 나일론 6 폴리아미드 6 복합 긴 유리 섬유 수정 플라스틱 12mm 원래 색상
    PA6 소재 PA6은 현재 현장에서 가장 널리 사용되는 재료 중 하나이며 PA6은 균형이 잘 잡혀 있고 성능이 좋은 매우 우수한 엔지니어링 플라스틱입니다. 나일론 6 엔지니어링 플라스틱 제조에 사용되는 원료는 광범위하고 저렴하며 외국 기업의 기술 독점에 의해 제한되지 않습니다. 그러나 이 저렴하고 우수한 소재를 잘 활용하기 위해서는 먼저 이에 대한 이해가 필요합니다. 오늘은 유리 섬유 강화 PA6 엔지니어링 플라스틱부터 시작하겠습니다. 왜냐하면 이것이 PA6 엔지니어링 플라스틱의 가장 중요한 범주이기 때문입니다. 다른 엔지니어링 플라스틱과 마찬가지로 PA6도 높은 흡수성, 저온 충격 인성, 치수 안정성 등의 장점과 단점을 가지고 있습니다. 따라서 엔지니어는 PA6를 개선하기 위해 다양한 방법을 사용하게 되는데, 이를 수정이라고 합니다. 현재 가장 일반적인 방법은 PA6를 유리섬유(GF)와 혼합하고 변형하는 것입니다. 오늘은 유리 섬유 GF 시스템에서 PA6 엔지니어링 플라스틱의 기계적 특성을 참고로 살펴보고 재료 선택에 도움을 드리겠습니다. PA6-LGF 1. PA6 엔지니어링 플라스틱에 대한 유리 섬유 함량의 영향 우리는 적용 및 실험을 통해 함량 ​​지수가 섬유 강화 복합재에 가장 큰 영향을 미치는 요인 중 하나라는 것을 알 수 있습니다. 유리 섬유 함량이 증가하면 재료의 단위 면적당 유리 섬유 수가 증가합니다. 이는 유리 섬유 사이의 PA6 매트릭스가 더 얇아진다는 것을 의미합니다. 이러한 변화는 유리 섬유 강화 PA6 복합재의 충격 인성, 인장 강도, 굽힘 강도 및 기타 기계적 특성을 결정합니다. 충격 성능 측면에서 유리 섬유 함량이 증가하면 PA6의 노치 충격 강도가 크게 증가합니다. PA6을 충전하는 장유리섬유(LGF)를 예로 들면, 충전량이 35%로 증가하면 노치 충격 강도가 24.8J/m에서 128.5J/m으로 증가합니다. 그러나 유리섬유 함량은 높을수록 좋고, 단유리섬유(SGF) 충진량은 42%에 도달했으며, 재료의 충격 강도는 최고 17.4kJ/㎡에 도달했지만, 계속 추가하면 간격 충격 강도가 하향세를 보였습니다. 경향. 굽힘 강도 측면에서 유리 섬유의 양이 증가하면 수지 층을 통해 유리 섬유 사이에 굽힘 응력이 전달될 수 있습니다. 동시에 유리 섬유가 수지에서 추출되거나 파손되면 많은 에너지를 흡수하여 재료의 굽힘 강도가 향상됩니다. 위의 이론은 실험을 통해 검증되었습니다. 데이터에 따르면 LGF(Long Glass Fiber)를 35% 충전하면 굽힘 탄성률이 4.99GPa로 증가하는 것으로 나타났습니다. SGF(단유리섬유) 함량이 42%일 때 굽힘 탄성률은 10410MPa에 달하며 이는 순수 PA6의 약 5배입니다. 2. Influence of glass fiber retention length on PA6 composites The fiber length of the glass fiber also has an obvious effect on the mechanical properties of the material. When the length of the glass fiber is less than the critical length (the length of the fiber when the material has the tensile strength of the fiber), the interface binding area of the glass fiber and the resin increases with the increase of the length of the glass fiber. When the composite material is broken, the resistance of the glass fiber from the resin is also greater, so as to improve the ability to withstand the tensile load.When the length of glass fiber exceeds the critical, the longer glass fiber can absorb more impact energy under impact load. In addition, the end of the glass fiber is the initiation point of crack growth, and the number of long glass fiber ends is relatively less, and the impact strength can be significantly improved.The experimental results show that the tensile strength of the material increases from 154.8MPa to 164.4MPa when the glass fiber content is kept at 40% and the length of the glass fiber increases from 4mm to 13mm. The bending strength and notched impact strength increased by 24% and 28%, respectively.Moreover, the research shows that when the original length of the glass fiber is less than 7mm, the material performance increases more obviously. Compared with short glass fiber, long glass fiber reinforced PA6 material has better appearance warping resistance, and can better maintain mechanical properties under high temperature and humidity conditions. TDS for your reference PA6 can be made into long glass fiber reinforced material by adding 20%-60% long glass fiber according to the characteristics of the product. PA6 with long glass fiber added has better strength, heat resistance, impact resistance, dimensional stability and warping resistance than without glass fiber added. Following TDS show the data of PA6-LGF30. Applicati
    더보기
  • PA66-NA-LGF30
    금속 고강도 대신 긴 유리 섬유를 사용한 Xiamen LFT Polyamide6 화합물
    폴리아미드 66 ​​플라스틱이란 무엇입니까? PA66 융점 260~265℃, 유리전이온도(건조상태) 50℃. 밀도는 1.13~1.16g/cm3입니다. PA66은 수분 흡수율이 낮고 치수 안정성이 뛰어나며 강성이 높습니다. 더 높은 융점은 열악한 환경에서 오랫동안 사용할 수 있으며, 넓은 온도 범위에서도 충분한 응력을 유지할 수 있으며 연속 사용 온도는 105℃입니다. 긴 유리 섬유 강화 복합재 유리 섬유 강화 플라스틱은 원래의 순수 플라스틱을 기반으로 유리 섬유 및 기타 첨가제를 채워 재료의 사용 범위를 향상시킵니다. 일반적으로 유리 섬유 강화 재료의 대부분은 PP, ABS, PA66, PA6, TPU, PPA, PBT, PEEK, PBT와 같은 일종의 구조 엔지니어링 재료인 제품의 구조 부품에 사용됩니다. 조달청 등등. 장점 1) 유리 섬유 강화 후 유리 섬유는 고온 내성 재료이므로 강화 플라스틱의 내열 온도는 유리 섬유, 특히 나일론 플라스틱을 사용하지 않은 이전보다 훨씬 높습니다. 2) 유리섬유 강화 후 유리섬유 첨가로 인해 플라스틱 고분자 사슬의 서로 이동이 제한되므로 강화플라스틱의 수축률이 많이 감소하고 강성이 크게 향상됩니다. 3) 유리 섬유 강화 후 강화 플라스틱은 응력 균열을 일으키지 않으며 동시에 플라스틱의 내 충격성이 크게 향상됩니다. 4) 유리 섬유 강화 후 유리 섬유는 고강도 재료이며 인장 강도, 압축 강도, 굽힘 강도와 같은 플라스틱의 강도를 크게 향상시킵니다. 5) 유리 섬유 강화 후 유리 섬유 및 기타 첨가제의 첨가로 인해 강화 플라스틱의 연소 성능이 크게 감소하고 대부분의 재료가 발화되지 않으며 일종의 난연성 재료입니다. 참고용 데이터시트 응용 PA66의 종합적인 성능은 우수하며 고강도, 우수한 강성, 내충격성, 내유성 및 내화학성, 내마모성 및 자체 윤활 장점이 있으며 특히 경도, 강성, 내열성 및 크리프 성능이 더 좋습니다. 데이터일스 등급 섬유 사양 주요특징 응용 일반등급 20%-60% 높은 인성(특히 저온에서) ,우수한 크리프성 및 내피로성,낮은 변형 자동차, 전자전기제품, 스포츠용품, 전동공구, 고속철도 부품 등 저항 등급 강화 20%-50% 높은 충격 강도 ,가벼운 질감 자동차, 전자제품, 스포츠 장비, 전동공구, 공구손잡이, 고속철도 부품, 기어 등 연구실 및 공장 회사소개 Xiamen LFT Composite Plastic Co.,LTD는 2009년에 설립되었으며 제품 연구 개발(R&D), 생산 및 판매 마케팅을 통합하는 장섬유 강화 열가소성 재료의 세계적인 브랜드 공급업체입니다. 당사의 LFT 제품은 ISO9001&16949 시스템 인증을 통과했으며 자동차, 군사 부품 및 총기, 항공우주, 신에너지, 의료 장비, 풍력 에너지, 스포츠 장비 등의 분야를 포괄하는 많은 국가 상표 및 특허를 획득했습니다.
    더보기
  • PA6-NA-LGF
    Xiamen LFT 나일론 폴리아미드 6 우수한 내열성 긴 유리 섬유 충전 펠렛
    폴리아미드란 무엇입니까? 폴리아미드(PA) 상표명 나일론으로도 알려진 폴리아미드는 특히 첨가제 및 충전재와 결합할 때 탁월한 내열 특성을 갖습니다. 게다가 나일론은 마모에 매우 강합니다. Xiamen LFT는 다양한 충전재를 사용하여 광범위한 내열성 나일론을 제공합니다. 어떤 PA 재료가 귀하에게 적합한지 확실하지 않은 경우 귀하의 요구 사항을 알려주시면 당사 팀이 무료로 기술 지원을 제공할 것입니다. 폴리아미드 6이란 무엇입니까? 나일론 6 또는 PA 6 반결정질 구조로 부직포에 사용 연성 및 내마모성 나일론 6의 장점은 무엇입니까? 나일론 6의 주요 장점은 강성과 내마모성입니다. 또한 충격강도, 내마모성, 전기절연성 등이 우수한 소재입니다. 나일론 6은 탄성이 뛰어나고 피로에 강한 소재로 장력에 의해 변형된 후에도 원래의 비율로 돌아옵니다. 이 폴리아미드는 무독성이며 유리 또는 탄소 섬유와 결합하여 성능을 높일 수 있습니다. 재료의 흡수 능력은 흡수하는 수분의 양에 정비례하여 증가합니다. 일부 염료에 대한 나일론 6의 높은 친화력으로 인해 염색의 다양성이 향상되고 더 밝고 깊은 패턴이 가능해집니다. 나일론 6을 플라스틱 사출 성형에 사용할 수 있습니까? 예, 나일론 6은 사출 성형에 적합한 재료입니다. 그 결과 성형된 나일론 부품은 뛰어난 강도와 내화학성 및 내열성을 갖고 있습니다. 나일론 6을 성형할 때 인장 강도를 높이기 위해 특정 양의 유리 섬유(보통 20~60%)를 재료에 주입하는 경우가 있습니다. 유리섬유는 강성을 향상시킵니다. 더욱이, UV 방사선은 나일론에 해로울 수 있기 때문에 시간이 지남에 따라 제품의 품질 저하 가능성을 줄이기 위해 사출 성형 전에 재료에 UV 안정제를 자주 첨가합니다. 나일론 6은 공중 합체입니까? 아니요, 나일론 6은 공중합체가 아닙니다. 그 단서는 "나일론 6"이라는 이름에 있습니다. 여기서 6은 6개의 탄소 원자를 가진 단일 반복 단량체를 나타냅니다. 나일론 6은 카프로락탐이라는 단량체의 중합을 통해 만들어집니다. 나일론 6은 두 개의 반복 단량체인 헥사메틸렌디아민과 아디프산으로 구성된 나일론 6,6과 혼동하지 마십시오. 이것은 그것을 공중 합체로 만듭니다. 다른 두 나일론도 공중합체입니다. 나일론 6,12와 나일론 4,6입니다. 긴 유리 섬유를 폴리아미드 6에 채우는 이유는 무엇입니까? 긴 유리 섬유 강화 복합재는 다른 강화 플라스틱 방법이 필요한 성능을 제공하지 못하거나 금속을 플라스틱으로 대체하려는 경우 문제를 해결할 수 있습니다. 긴 유리 섬유 강화 복합재는 비용 효율적으로 제품 비용을 절감하고 엔지니어링 폴리머의 기계적 특성을 효과적으로 향상시킬 수 있습니다. 긴 섬유를 제품 내부에 균일하게 분포시켜 네트워크 골격을 형성하여 재료 제품의 기계적 특성을 향상시킬 수 있습니다. LFT는 사출 성형, 압축 성형 및 압출 응용 분야를 위한 장섬유 강화 열가소성 소재 제품군의 제품명입니다. 이러한 재료는 펠릿의 유리섬유 길이가 표준 열가소성 화합물과 다릅니다. 완성된 부품의 섬유 길이를 유지하는 것이 LFT 성능의 핵심입니다. 유리섬유는 펠릿 내에서 연속적이며 올바르게 성형되면 놀라운 특성과 성능을 제공합니다. PA6-LGF의 용도는 무엇입니까? 관심을 가질 만한 다른 PA 플라스틱:                                           PA66-LGF                                                                        PA12-LGF 샤먼 LFT 소개
    더보기
  • PA6-NA-LGF
    Xiamen LFT 나일론 폴리아미드 6 우수한 내열성 긴 유리 섬유 충전 펠렛
    폴리아미드란 무엇입니까? 폴리아미드(PA) 상표명 나일론으로도 알려진 폴리아미드는 특히 첨가제 및 충전재와 결합할 때 탁월한 내열 특성을 갖습니다. 게다가 나일론은 마모에 매우 강합니다. Xiamen LFT는 다양한 충전재를 사용하여 광범위한 내열성 나일론을 제공합니다. 어떤 PA 재료가 귀하에게 적합한지 확실하지 않은 경우 귀하의 요구 사항을 알려주시면 당사 팀이 무료로 기술 지원을 제공할 것입니다. 폴리아미드 6이란 무엇입니까? 나일론 6 또는 PA 6 반결정질 구조로 부직포에 사용 연성 및 내마모성 나일론 6의 장점은 무엇입니까? 나일론 6의 주요 장점은 강성과 내마모성입니다. 또한 충격강도, 내마모성, 전기절연성 등이 우수한 소재입니다. 나일론 6은 탄성이 뛰어나고 피로에 강한 소재로 장력에 의해 변형된 후에도 원래의 비율로 돌아옵니다. 이 폴리아미드는 무독성이며 유리 또는 탄소 섬유와 결합하여 성능을 높일 수 있습니다. 재료의 흡수 능력은 흡수하는 수분의 양에 정비례하여 증가합니다. 일부 염료에 대한 나일론 6의 높은 친화력은 염색의 다양성을 높이고 더 밝고 깊은 패턴을 만들 수 있는 가능성을 제공합니다. 나일론 6을 플라스틱 사출 성형에 사용할 수 있습니까? 예, 나일론 6은 사출 성형에 적합한 재료입니다. 그 결과 성형된 나일론 부품은 뛰어난 강도와 내화학성 및 내열성을 갖고 있습니다. 나일론 6을 성형할 때 인장 강도를 높이기 위해 특정 양의 유리 섬유(보통 20~60%)를 재료에 주입하는 경우가 있습니다. 유리섬유는 강성을 향상시킵니다. 더욱이, UV 방사선은 나일론에 해로울 수 있기 때문에 시간이 지남에 따라 제품의 품질 저하 가능성을 줄이기 위해 사출 성형 전에 재료에 UV 안정제를 자주 첨가합니다. 나일론 6은 공중 합체입니까? 아니요, 나일론 6은 공중합체가 아닙니다. 그 단서는 "나일론 6"이라는 이름에 있습니다. 여기서 6은 6개의 탄소 원자를 가진 단일 반복 단량체를 나타냅니다. 나일론 6은 카프로락탐이라는 단량체의 중합을 통해 만들어집니다. 나일론 6은 두 개의 반복 단량체인 헥사메틸렌디아민과 아디프산으로 구성된 나일론 6,6과 혼동하지 마십시오. 이것은 그것을 공중 합체로 만듭니다. 다른 두 나일론도 공중합체입니다. 나일론 6,12와 나일론 4,6입니다. 긴 유리 섬유를 폴리아미드 6에 채우는 이유는 무엇입니까? 긴 유리 섬유 강화 복합재는 다른 강화 플라스틱 방법이 필요한 성능을 제공하지 못하거나 금속을 플라스틱으로 대체하려는 경우 문제를 해결할 수 있습니다. 긴 유리 섬유 강화 복합재는 비용 효율적으로 제품 비용을 절감하고 엔지니어링 폴리머의 기계적 특성을 효과적으로 향상시킬 수 있습니다. 긴 섬유를 제품 내부에 균일하게 분포시켜 네트워크 골격을 형성하여 재료 제품의 기계적 특성을 향상시킬 수 있습니다. LFT는 사출 성형, 압축 성형 및 압출 응용 분야를 위한 장섬유 강화 열가소성 소재 제품군의 제품명입니다. 이러한 재료는 펠릿의 유리섬유 길이가 표준 열가소성 화합물과 다릅니다. 완성된 부품의 섬유 길이를 유지하는 것이 LFT 성능의 핵심입니다. 유리섬유는 펠릿 내에서 연속적이며 올바르게 성형되면 놀라운 특성과 성능을 제공합니다. PA6-LGF의 용도는 무엇입니까? 관심을 가질 만한 다른 PA 플라스틱:                                           PA66-LGF                                                                        PA12-LGF 샤먼 LFT 소개
    더보기
  • PA6-LGF
    LFT-G 폴리아미드6 나일론6 충진 긴 유리섬유 자동차 부품용 기존 색상
    PA6 플라스틱이란 무엇입니까? 폴리아미드(PA)는 일반적으로 나일론이라고 불리며 주쇄에 아미드기(-NHCo-)를 포함하는 이종사슬 고분자이다. 지방족 그룹과 방향족 그룹으로 나눌 수 있습니다. 가장 먼저 개발되었으며 가장 많이 사용되는 열가소성 엔지니어링 재료입니다. 폴리아미드 주쇄에는 반복되는 아미드기가 많이 포함되어 있어 나일론이라는 플라스틱, 나일론이라는 합성섬유로 사용됩니다. 이원 아민과 이염기산 또는 아미노산에 포함된 탄소 원자 수에 따라 다양한 폴리아미드가 제조될 수 있습니다. 현재 폴리아미드는 수십 가지가 있으며 그 중 폴리아미드-6, 폴리아미드-66 및 폴리아미드-610이 가장 널리 사용됩니다. 폴리아미드-6은 경량, 강한 강도, 내마모성, 약산 및 알칼리 저항성, 일부 유기 용제, 쉬운 성형 및 가공 및 기타 우수한 특성을 지닌 지방족 폴리아미드로 섬유, 엔지니어링 플라스틱 및 박막 및 기타 분야에 널리 사용됩니다. 그러나 PA6 분자 사슬 세그먼트에는 강한 극성의 아미드 그룹이 포함되어 있어 물 분자와 수소 결합을 쉽게 형성할 수 있습니다. 이 제품은 물 흡수율이 크고 치수 안정성이 낮으며 건조 상태 및 저온에서 충격 강도가 낮고 산 및 알칼리에 강한 내성이라는 단점이 있습니다. . 나일론 6의 장점: 높은 기계적 강도, 우수한 인성, 높은 인장 강도 및 압축 강도. 뛰어난 피로 저항성, 반복 굽힘 후에도 부품은 원래의 기계적 강도를 유지할 수 있습니다. 연화점이 높고 내열성이 높습니다. 매끄러운 표면, 작은 마찰 계수, 내마모성. 내식성, 알칼리 및 대부분의 염분에 매우 강하고 약산, 오일, 가솔린, 방향족 화합물 및 일반 용제에도 강하며 방향족 화합물은 불활성이지만 강산 및 산화제에는 내성이 없습니다. 가솔린, 오일, 지방, 알코올, 알칼리성 등의 부식에 저항할 수 있으며 노화 방지 능력이 좋습니다. 자기 소화성, 무독성, 무취, 내후성이 우수하고 생물학적 침식에 불활성이며 항균 및 곰팡이 저항성이 우수합니다. 우수한 전기 성능, 우수한 전기 절연성, 나일론 볼륨 저항이 높고, 높은 항복 전압 저항이 있으며, 건조한 환경에서 주파수 절연 재료를 작동할 수 있으며, 습도가 높은 환경에서도 여전히 우수한 전기 절연성을 유지합니다. 경량이며 염색이 용이하고 성형이 용이하며 용융점도가 낮아 흐름이 빠르다. 나일론 6의 단점: 물을 쉽게 흡수하고 물을 흡수하며 포화수는 3% 이상에 도달할 수 있습니다. 내광성이 좋지 않아 장기간 고온 환경에서 공기 중의 산소와 함께 산화되어 처음에는 색상이 갈색으로 변하고 후속 표면이 부서지고 갈라집니다. 사출 성형 기술 요구 사항이 더욱 엄격해지고, 미량 수분이 존재하면 성형 품질에 큰 손상을 줄 수 있습니다. 열팽창으로 인해 제품의 치수 안정성을 제어하기가 어렵습니다. 제품에 날카로운 각도가 있으면 응력이 집중되고 기계적 강도가 감소합니다. 벽 두께가 균일하지 않으면 부품이 뒤틀리고 변형됩니다. 후처리에는 높은 정밀도의 장비가 요구됩니다. 물, 알코올 및 팽윤을 흡수하며 강산 및 산화제에 저항하지 않으며 내산성 재료로 사용할 수 없습니다. 긴 유리 섬유를 채우는 이유는 무엇입니까? PA6은 경량성, 강한 강도, 내마모성, 약산성, 내알칼리성, 일부 유기용제성 등 우수한 특성을 갖고 있으며 성형 및 가공이 용이합니다. 섬유, 엔지니어링 플라스틱, 필름 분야에서 널리 사용됩니다. 그러나 PA6의 분자 사슬 부분에는 물 분자와 수소 결합을 형성하기 쉬운 극성이 높은 아미드 그룹이 포함되어 있습니다. 이 제품은 수분 흡수율이 크고, 치수 안정성이 낮으며, 건조 상태 및 저온 충격 강도가 낮고, 산 및 알칼리에 강하다는 단점이 있습니다. 과학 기술의 발전과 삶의 질 향상으로 인해 기존 PA6 소재의 일부 특성 결함으로 인해 일부 분야에서는 개발이 제한되었습니다. PA6의 성능을 향상시키고 응용 분야를 확장하려면 PA6를 수정해야 합니다. 충전 강화 수정은 PA6의 물리적 수정을 위한 일반적인 방법입니다. PA6를 매트릭스에 유리섬유, 탄소섬유 등의 충전재를 첨가해 재료의 기계적 성질, 난연성, 열전도성, 치수안정성을 획기적으로 향상시킨 개질을 말한다. PA6-LGF의 적용은 무엇입니까? 30% 길이의 유리 섬유 강화 PA6의 개량 단면은 전동 공구 쉘
    더보기
첫 페이지 1 2 3 4 5 6 마지막 페이지

6 페이지들

뉴스 레터

-- 최신 토픽으로 업데이트 받기

저작권 © 2015-2024 Xiamen LFT composite plastic Co.,ltd..모든 권리 보유.

제품

 뉴스

접촉