긴 탄소 섬유는 고강도 및 높은 탄성 계수와 우수한 기계적 성질을 가진 새로운 소재입니다. 그것은 유기 섬유의 탄화 및 흑연 화에 의해 얻어진 미정 질 흑연 물질이다. 그것의 비중은 강철의 1/4보다는 더 적은, 그것의 힘은 강철의 그것보다는 더 높다. 내식성, 고 모듈러스, 용융 없음. 함침 후 각종 수지 기재를 펠렛 형상으로 압출 성형하고, 긴 탄소 섬유 폴리머. 직접 성형 제품에 사용할 수 있습니다. 최근 몇 년간 항공 우주, 기계 및 전자 화학 물질에 널리 사용되었습니다.
-
Xiamen LFT 폴리에테르에테르케톤 CF 복합 20%-60% 고성능 자연 색상제품등급 : 일반등급 섬유 사양: 20%-60% 제품 특징: 난연성, 내열성, 내화학성, 낮은 마찰 계수, 우수한 내하중성 제품 응용 분야: 항공, 기계, 전자, 화학, 자동차, 기타 첨단 기술 분야.
- 내하력이 좋은 폴리에테르에테르케톤
- 자체 공장에서 제작한 낮은 마찰계수
- 자체 공장에서 만든 순수하고 처녀 엿보기
- 폭넓은 용도 엿보기 산업자재 강화 엿보기
- 맞춤형 소재 피크 인성 탄소
- 긴 유리 섬유는 재활용이 가능합니다.
태그 :
-
샤먼 LFT PLA 충전 긴 탄소 섬유 강화 폴리유산PLA 재료는 현재 생분해성 재료 분야의 선구적인 재료입니다. 장탄소섬유 강화 폴리락트산 PLA 개질 소재는 미래 친환경 소재 분야에서 세계적인 장점이 될 가능성이 높습니다.더보기
-
Xiamen LFT Polyamide12 충전 긴 탄소 섬유 복합 경량 샘플 사용 가능PA12 정보 장탄소사슬 나일론은 나일론 분자의 주쇄 반복 단위에 아미드기를 갖는 나일론으로, 두 아미드기 사이의 메틸렌기의 길이가 10 이상입니다. 나일론 11, 나일론 12를 포함하여 장탄소사슬 나일론이라고 부릅니다. PA12는 나일론 12로 폴리(도데카락탐), 폴리(라우로락탐)으로도 알려져 있으며 탄소 사슬 이 긴 나일론의 일종입니다. 중합의 기본 원료는 반결정-결정성 열가소성 소재인 부타디엔이다. 나일론 12는 가장 널리 사용되는 긴 탄소 사슬 나일론으로 낮은 흡수성 외에도 나일론의 일반적인 특성을 대부분 가지며 높은 치수 안정성, 고온 저항, 내식성, 우수한 인성, 가공 용이성 및 기타 장점을 가지고 있습니다. . 또 다른 긴 탄소 사슬 나일론 소재인 PA11과 비교하면 PA12의 원료 부타디엔은 PA11의 원료 피마자유 가격의 1/3에 불과하며 PA11 대신 대부분의 시나리오에 사용할 수 있으며 자동차 등 다양한 분야에서 폭넓게 적용됩니다. 연료 호스, 에어 브레이크 호스, 해저 케이블 및 3D 프린팅. 장쇄 나일론 중에서 PA12는 다른 나일론 소재에 비해 큰 장점을 가지고 있으며, 그 장점은 가장 낮은 흡수율, 가장 낮은 밀도, 낮은 융점, 내충격성, 마찰 저항성, 저온 저항성, 연료 저항성, 우수한 치수 안정성, 우수한 내마모성입니다. -소음 효과 등 PA12는 PA6, PA66 및 폴리올레핀(PE, PP)의 특성을 동시에 가지고 있어 경량화 및 물리화학적 특성의 조합을 달성하며 성능도 우수합니다. 화학적 특성. PA12-LCF 모재를 콘크리트에 비유하면 섬유질은 철근과 같고, 이 둘을 섞는 것은 콘크리트에 철근을 더하는 것과 같습니다. 콘크리트만 있으면 외력에 의해 주물이 쉽게 깨지지만, 여기에 고강도 철근을 가하고 콘크리트가 충분히 감싸면 주물은 하나의 단위가 됩니다. 물체가 외력을 받을 때 철근은 대부분의 외력을 견딜 수 있어 전체의 구조적 강도가 매우 높습니다. 탄소 섬유는 많은 우수한 특성, 탄소 섬유의 높은 축 강도 및 계수, 저밀도, 높은 비성능, 크리프 없음, 비산화 환경에서 초고온에 대한 저항성, 우수한 피로 저항성, 비열 및 비열 사이의 전기 전도성을 가지고 있습니다. 금속 및 금속, 작은 열팽창 계수 및 이방성, 우수한 내식성, 우수한 X선 투과율. 우수한 전기 및 열 전도성, 우수한 전자기 차폐 등. 기존 유리 섬유와 비교하여 탄소 섬유는 영률이 3배 이상 높습니다. 유기용제, 산, 알칼리에 불용성, 팽윤성이 있는 케블라 섬유에 비해 영률이 약 2배로 내식성이 우수합니다. 나일론 자체는 성능이 뛰어난 엔지니어링 플라스틱이지만 흡습성이 낮고 제품의 치수 안정성이 좋지 않습니다. 강도와 경도도 금속과는 거리가 멀다. 이러한 단점을 극복하기 위해 이르면 70년대 이전부터다. 사람들은 성능을 향상시키기 위해 강화를 위해 탄소 섬유 또는 기타 다양한 종류의 섬유를 사용해 왔습니다. 탄소 섬유 강화 나일론 소재는 최근 몇 년 동안 급속히 발전하고 있습니다. 나일론과 탄소 섬유는 엔지니어링 플라스틱 소재 분야에서 우수한 성능을 발휘하기 때문에 복합 소재 합성은 강화되지 않은 나일론보다 강도와 강성 등 두 가지의 우수성을 반영합니다. , 고온 크리프가 작고 열 안정성이 크게 향상되었으며 치수 정확도가 좋고 내마모성이 좋습니다. 유리섬유 강화에 비해 감쇠력이 뛰어나 성능이 더 좋습니다. 따라서 탄소섬유 강화 나일론(CF/PA) 복합재는 최근 몇 년간 급속히 발전했습니다. 참고용 데이터시트 나일론 12는 낮은 수분 흡수성, 우수한 저온 저항성, 우수한 기밀성, 탁월한 알칼리 및 내유성, 알코올 및 무기 희석 산 및 방향족에 대한 중간 저항성, 우수한 기계적 및 전기적 특성을 가지며 자기 소화성 물질입니다. 애플리케이션 자동차, 스포츠 부품, 태양 에너지, 고급 장난감 및 기타 산업에 적합합니다. 당신이 궁금해 할 다른 제품 PP-LCF PA6-LCF PA66-LCF 자주 묻는 질문 1. 열가소성 탄소섬유 복합재료는 어떻게 저비용 및 환경 보호를 달성합니까? 열가소성 탄소 섬유 복합재는 고급 기계용 부품을 만드는 데 사용됩니다. 가공성, 진공성
- 나일론 복합 펠렛 폴리머 과립
- 나일론 폴리머 LCF 제조업체
- 변성재료 나일론 PA12
- 압출 레벨 나일론 수정됨
- pa lcf30 생산자 엉망 생산 좋은 가격
- 탄소 섬유 강화 pa12 펠렛
태그 :
-
LFT 폴리아미드 66 고성능 긴 탄소 섬유 강화재내열성을 갖춘 폴리아미드 66 로빙 탄소 섬유 나일론 블랙 색상
- 긴 탄소 섬유 강화 펠릿
- 금속과 강철 대신 로빙 탄소 섬유 PA66
- 주사용 나일론66 복합 과립
- 고품질 PA66 장섬유 복합재료,
- 폴리아미드 장섬유 복합재
- 자동차 부품용 버진 플라스틱 PA6 LCF40
태그 :
-
-
Xiamen LFT 화염 저항 폴리페닐렌 황화물 긴 탄소 섬유 강화 화합물폴리페닐렌설파이드(Polyphenylenesulfide)는 우수한 종합 특성을 지닌 열가소성 특수 엔지니어링 플라스틱입니다.
- PP 섬유 특수 열가소성 수지
- 엔지니어링 플라스틱의 높은 기계적 성질
- 금속강 대신 신소재
- 중국 플라스틱으로 만든 사출 성형
- 까다로운 산업용 애플리케이션
- 탄소 섬유 천연 색상 강화
태그 :
-
긴 탄소 섬유 보강 폴리머가 포함된 샤먼 LFT 폴리프로필렌 PP 공중합체장섬유 강화 열가소성 수지는 가벼운 무게로 금속을 대체할 수 있는 탁월한 선택입니다.
- 플라스틱의 기계적 특성 증가
- 맞춤형 소재 고품질 ISO
- 사출 성형 플라스틱 엔지니어링 공장
- LCF 탄소섬유 충전 열가소성 수지
- 긴 길이의 펠릿 화합물 제조업체
- 연속 섬유 롱 컷 좋은 성능
태그 :
-
샤먼 LFT PLA 충전 긴 탄소 섬유 강화 폴리유산PLA 재료는 현재 생분해성 재료 분야의 선구적인 재료입니다. 장탄소섬유 강화 폴리락트산 PLA 개질 소재는 미래 친환경 소재 분야에서 세계적인 장점이 될 가능성이 높습니다.더보기
-
샤먼 LFT 폴리아미드 12 긴 탄소 섬유 복합 나일론 펠렛 폴리머LFT PA12 긴 탄소 섬유 복합재 데이터 시트 및 기술 지침
- 긴 탄소 섬유 복합 고강도
- 자동차 부품용 LFT PA12 긴 탄소 섬유
- 나일론 12 펠렛 폴리머 엔지니어링 플라스틱
- PA12 과립은 금속 대신 열가소성 수지입니다.
- Pa12 펠릿 폴리아미드 경량
- PA12 긴 탄소 섬유 복합재
태그 :
-
Xiamen PLA Polylactic Acid 녹색 재료는 긴 탄소 섬유 강화로 재활용 가능PLA(폴리락트산)는 반결정성 열가소성 폴리에스테르입니다. 이는 재생 가능한 자원에서 추출되므로 바이오플라스틱으로 분류됩니다. PLA는 일반적으로 식물성 전분으로 만들어집니다. 이러한 기원으로 인해 결국 PLA 합성에 사용되는 두 가지 주요 단량체인 젖산과 락타이드가 탄생하게 되었습니다. 각 단량체는 다양한 공정을 통해 PLA를 생산하는 데 사용될 수 있습니다. 저분자량 PLA는 1932년에 처음 생산되었습니다. 1952년에 DuPont은 이 공정을 더욱 발전시켜 고분자량 PLA를 만들었습니다. PLA는 인쇄하기 쉽습니다. 생분해성이기 때문에 ABS보다 환경친화적입니다. PLA 생산에는 훨씬 적은 에너지가 필요합니다. 긴 탄소 섬유 강화 열가소성 수지 LFT ® 는 중량 및 비용 절감을 위한 탁월한 특성을 제공하는 Centerfill 제조 방법을 통해 LGF 또는 LCF 화합물 입니다 . 7-25mm의 펠렛 길이와 LGF 또는 LCF 함량 의 20% -7 0% 범위를 갖춘 LFT ® 제품군은 다음과 같은 업계의 광범위한 요구 사항에 맞는 맞춤형 솔루션으로 구성됩니다. · LFT ® - 열 안정성 요구 사항을 충족합니다. · LFT ® - UV 저항성을 포함한 내후성 특성을 제공합니다. · LFT ® - 특히 저온에서 탁월한 충격 저항 기능을 갖춘 초고성능 및 안전성. · LFT ® - 비용 효율적 Ps 센터필 제조방법 :센터필은 당사 독자적인 기술을 이용하여 수천 개의 필라멘트로 구성된 글라스 로빙(GFR)을 함침 장치에 투입하여 열가소성 수지를 녹여 필라멘트 사이에 균일하게 함침시킨 후 펠릿으로 절단하는 기술입니다. 제조. 복합재는 플라스틱과 어떻게 다른가요? 플라스틱 부품은 일반적으로 단일 폴리머 주입으로 만들어지거나 때로는 그립 및 밀봉과 같은 특정 용도를 위해 부품에 고무를 오버몰딩하는 2단계 공정으로 만들어집니다. 일반적으로 단일 단계 작업을 포함하여 비교적 제조가 쉽습니다. 반면에 복합재는 항상 두 개 이상의 동시 처리된 재료이므로 개별 구성 요소가 제공할 수 있는 것보다 더 나은 특성을 얻습니다. 또한 본질적으로 제조가 더 복잡합니다. 일반적으로 수동 레이업 프로세스가 필요하며 단순하고 자동화 가능한 성형 작업 출력보다 인건비가 훨씬 더 많이 드는 경향이 있습니다. 복합재는 일반적으로 동등한 플라스틱 부품보다 본질적으로 더 강합니다. 이를 통해 복합 부품은 유사한 플라스틱 부품에 비해 더 높은 강도와 감소된 무게를 제공할 수 있습니다. 플라스틱 부품은 대부분 모양과 크기에 제한이 없습니다. 복합재 부품은 매우 작은 구성요소에 거의 사용되지 않지만 매우 클 수 있지만 모양의 복잡성과 미세한 세부 사항이 상당히 제한됩니다. 대체로 플라스틱은 저비용, 대량 응용 분야에 사용되는 반면, 복합재는 훨씬 더 비용이 많이 들고 고부가가치 및 소량 작업에 사용됩니다. 샤먼 LFT 복합 플라스틱 유한 회사 Xiamen LFT 복합 플라스틱 유한 회사는 2009년 열가소성 강화 복합 산업의 베테랑에 의해 설립되었으며 자체 브랜드의 연구, 생산 및 마케팅을 통합하는 장섬유 강화 열가소성 재료의 글로벌 공급업체 중 하나입니다. 당사의 제품은 ISO9001&16949 시스템 인증을 통과했으며 여러 국가 상표 및 특허를 받았습니다. 당사의 제품은 가전제품, 항공우주, 자동차, 군수, 전기 및 기타 부품 제조는 물론 의료 장비, 스포츠 용품, 생활 필수품 및 기타 분야의 제조에 사용될 수 있습니다. 회사는 품질 제일이라는 경영 이념을 고수하여 국내외에서 탄탄한 기반을 마련해 왔으며 국내외 고객으로부터 만장일치로 인정을 받았습니다.더보기